首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3614篇
  免费   694篇
  国内免费   1451篇
  2024年   4篇
  2023年   150篇
  2022年   139篇
  2021年   197篇
  2020年   247篇
  2019年   288篇
  2018年   256篇
  2017年   236篇
  2016年   254篇
  2015年   191篇
  2014年   204篇
  2013年   299篇
  2012年   164篇
  2011年   208篇
  2010年   235篇
  2009年   212篇
  2008年   230篇
  2007年   234篇
  2006年   240篇
  2005年   201篇
  2004年   191篇
  2003年   176篇
  2002年   122篇
  2001年   121篇
  2000年   135篇
  1999年   108篇
  1998年   78篇
  1997年   63篇
  1996年   75篇
  1995年   56篇
  1994年   52篇
  1993年   40篇
  1992年   58篇
  1991年   29篇
  1990年   39篇
  1989年   45篇
  1988年   23篇
  1987年   22篇
  1986年   21篇
  1985年   25篇
  1984年   22篇
  1983年   5篇
  1982年   9篇
  1981年   10篇
  1980年   10篇
  1978年   13篇
  1977年   7篇
  1976年   3篇
  1974年   3篇
  1958年   4篇
排序方式: 共有5759条查询结果,搜索用时 46 毫秒
71.
几种沙漠地区野生药用植物资源及其引种栽培   总被引:3,自引:0,他引:3  
几种沙漠地区野生药用植物资源及其引种栽培尹林克(中国科学院吐鲁番沙漠植物园,新疆吐鲁番838008)Resourcesofseveralspeciesofwildmedicinalplantsindesertregionandtheirintrodu...  相似文献   
72.
Geert van Wirdum 《Hydrobiologia》1993,265(1-3):129-153
A survey of base-rich wetlands in The Netherlands is presented. The main area of their occurrence is the low-lying Holocene part of the country, until some thousand years ago a large and coherent wetland landscape: the Holland wetland. The development of various parts of the Holland wetland into marshes, fens and bogs can be understood from hydrological relations in mire basins, as recognized in the distinction of primary, secondary and tertiary mire basin stages. Presently, the remnants of the Holland wetland are separate base-rich wetlands. The succession of their vegetation reflects various abiotic conditions and human influences. Three main developmental periods are distinguished as regards these factors. The first, geological period of mire development is seen as a post-glacial relaxation, with the inertia due to the considerable mass of wetland as a stabilizing factor. Biological “grazing” influences, as an aspect of utilization by humans, converted base-rich wetlands to whole new types in the second, historical period. Presently, mass and harvesting have decreased in importance, and actual successions in terrestrializing turbaries seem to reflect rapidly changing environmental conditions. Human control could well become the most important factor in the future development of wetland nature. The present value of open fen vegetation strongly depends on the continuation of the historical harvesting. The development of wooded fen may help to increase the mass of wetland in the future. Best results in terms of biodiversity are expected when their base state is maintained through water management. The vegetation and hydrology of floating fens in terrestrializing turbaries is treated in some more detail. Various lines and phases in the succession are distinguished. Open fen vegetation at base-rich, yet nutrient-poor sites is very rich in species threatened elsewhere. The fast acidification of certain such fens is attributed to hydrological and management factors. This acidification is illustrated in the profile of a floating raft sample. At the scale of these small fens, the elemental structure comprising base-rich fen, transitional fen and bog vegetation, is not as stable as it was in the large Holland wetland. A critical role seems to be played by the supply of bases with the water influx. The changing base state is supposed to change the nutrient cycling to such an extent that it would be correct to call this trophic excitation of the ecosystem, rather than just eutrophication. Eutrophication indicates a quantitative reaction to an increased nutrient supply, the internal system being unaltered. The drainage of fens, resulting in an increased productivity of the vegetation, provides another example of excitation, to the effect that the functional system is dramatically changed internally.  相似文献   
73.
环境因子对荒漠沙蜥种群密度影响的研究   总被引:6,自引:1,他引:5  
本文研究人类改造荒漠的活动,植被,潜在的可利用的食物资源,竞争种的密度,土壤理化性质等坏境因子对荒漠沙蜥种群密度的影响。结果说明:人类的活动对沙蜥种群密度没有显著影响;决定沙蜥种群密度的主导因子是潜在的可利用的食物资源,植被,土壤含水量,竞争种的密度。这些因子的任何改变都能改变沙蜥的种群密度,均具有调节种群的作用。  相似文献   
74.
Vegetation cover creates competing effects on land surface temperature: it typically cools through enhancing energy dissipation and warms via decreasing surface albedo. Global vegetation has been previously found to overall net cool land surfaces with cooling contributions from temperate and tropical vegetation and warming contributions from boreal vegetation. Recent studies suggest that dryland vegetation across the tropics strongly contributes to this global net cooling feedback. However, observation-based vegetation-temperature interaction studies have been limited in the tropics, especially in their widespread drylands. Theoretical considerations also call into question the ability of dryland vegetation to strongly cool the surface under low water availability. Here, we use satellite observations to investigate how tropical vegetation cover influences the surface energy balance. We find that while increased vegetation cover would impart net cooling feedbacks across the tropics, net vegetal cooling effects are subdued in drylands. Using observations, we determine that dryland plants have less ability to cool the surface due to their cooling pathways being reduced by aridity, overall less efficient dissipation of turbulent energy, and their tendency to strongly increase solar radiation absorption. As a result, while proportional greening across the tropics would create an overall biophysical cooling feedback, dryland tropical vegetation reduces the overall tropical surface cooling magnitude by at least 14%, instead of enhancing cooling as suggested by previous global studies.  相似文献   
75.
Negative extreme anomalies in vegetation growth (NEGs) usually indicate severely impaired ecosystem services. These NEGs can result from diverse natural and anthropogenic causes, especially climate extremes (CEs). However, the relationship between NEGs and many types of CEs remains largely unknown at regional and global scales. Here, with satellite-derived vegetation index data and supporting tree-ring chronologies, we identify periods of NEGs from 1981 to 2015 across the global land surface. We find 70% of these NEGs are attributable to five types of CEs and their combinations, with compound CEs generally more detrimental than individual ones. More importantly, we find that dominant CEs for NEGs vary by biome and region. Specifically, cold and/or wet extremes dominate NEGs in temperate mountains and high latitudes, whereas soil drought and related compound extremes are primarily responsible for NEGs in wet tropical, arid and semi-arid regions. Key characteristics (e.g., the frequency, intensity and duration of CEs, and the vulnerability of vegetation) that determine the dominance of CEs are also region- and biome-dependent. For example, in the wet tropics, dominant individual CEs have both higher intensity and longer duration than non-dominant ones. However, in the dry tropics and some temperate regions, a longer CE duration is more important than higher intensity. Our work provides the first global accounting of the attribution of NEGs to diverse climatic extremes. Our analysis has important implications for developing climate-specific disaster prevention and mitigation plans among different regions of the globe in a changing climate.  相似文献   
76.
为探索适合格木(Erythrophleum fordii)人工林在幼龄阶段的种植密度,在不同林分密度(2 m×1 m、2 m×2 m、2 m×3 m、3 m×3 m)的6 a生格木人工林下设置标准样地,采用土壤质量评价和灰色关联度等方法,探究不同密度下格木幼林的土壤理化与林下植被特征。结果表明,密度2 m×3 m下的林木胸径、树高最优,较最低水平高16.7%、27.9%;土壤总孔隙度最大,全N、硝态N、铵态N含量最高,灌木草本多样性最高。相关性分析表明土壤化学性质对灌木草本的多样性影响最大。不同林分密度下格木幼林土壤理化性质及林下植物多样性有显著差异,因此,选择合适的林分密度对人工林土壤肥力的可持续利用及林分的经营培育至关重要。  相似文献   
77.

Aim

Desert springs or oases are the only permanent mesic environments in highly water-limited arid regions. Oases have immense cultural, evolutionary and ecological importance for people and a high number of endemic and relic species. Nevertheless, they are also highly vulnerable ecosystems, with invasive species, overexploitation and climate change being the primary threats. We used the arthropod communities' spatiotemporal diversity and distribution patterns as a proxy to understand biodiversity dynamics in two geographically close but ecologically contrasting and highly threatened ecosystems: deserts and oases.

Location

Baja California Peninsula, Mexico.

Methods

Arthropod communities at five oases and surrounding desert scrub areas were sampled in two seasons. Using DNA metabarcoding and traditional taxonomic surveys, we tried to identify what biotic and abiotic characteristics of the habitat are important drivers of arthropod diversity and how these characteristics can change across spatial and temporal scales.

Results

Over 6200 individuals representing 23 orders were collected. In oasis samples, the community composition fluctuated more in space (i.e. among sites) than in time (i.e. seasons). Thus, seasonal changes did not affect oasis community diversity and composition, but the dissimilarity among sites increased with geographic distance. Moreover, anthropic activities negatively correlated with arthropod diversity in oases. On the other hand, the season, geography (e.g. latitude) and biotic characteristics of the habitat (e.g. sampled scrub species) significantly affected the diversity and composition of the desert arthropod communities.

Main Conclusions

Neutral dynamics (e.g. historical climatic events, dispersal limitation and spatial component) and human impact significantly influenced the biodiversity patterns of each oasis. In contrast, the habitat's seasonal variation and biotic characteristics were the most important variables influencing the diversity of the desert communities. Baja California oases harbour distinct invertebrate communities; therefore, each oasis should be conserved individually to preserve these unique assemblages.  相似文献   
78.

Aims

Woody plant encroachment is a widespread phenomenon affecting treeless or sparsely treed habitats. We aimed to determine the extent and timing of tree and shrub encroachment into rock barrens of eastern Ontario over the last century, and to assess implications for their ongoing management.

Location

Queen's University Biological Station in the Frontenac Arch ecoregion.

Methods

We quantified the extent of change in woody vegetation in 290 rock barrens using aerial photography from 1925, 1965, and 2008. Composition and structure of woody plant communities in 10 barrens was subsequently quantified in the field using plot-based sampling. Cores or cross-sections were obtained from individuals >1.5 m height and dendrochronological techniques were used to determine their age and identify temporal patterns of any woody encroachment.

Results

Aerial photography indicated that the mean proportion of woody plant cover in barrens increased 22.5% from 1925 to 2008. Dendroecological analysis supported this. Few trees were present prior to 1900 and most established since 1960. Fraxinus americana, Juniperus virginiana, and Juniperus communis were the most common woody species colonizing the barrens. Remnants of large Pinus strobus stumps with extensive charring were found in 90% of the sampled barrens at a mean density of 22.6 stumps ha−1.

Conclusions

Rock barrens on the Frontenac Arch have changed substantially over the past century; gradually being colonized by trees and shrubs and losing their distinctly open character. Active management — including prescribed fire and mechanical thinning — may be necessary if there is a desire to maintain these barrens and the rare species they support as components of the region's biodiversity. However, identification of a reference state for restoration is complicated by the fact that the structure and composition of these habitats were undoubtedly altered by European land clearance in the 19th century, and that some of these areas likely existed as pine woodlands before that.  相似文献   
79.

Aims

Shallow soils on acidic bedrock in dry areas of Central Europe support dry grasslands and heathlands that were formerly used as extensive pastures. These habitats are of high conservation value, but their abandonment in the 20th century triggered slow natural succession that poses a threat to specialized plant species. We asked how this vegetation and its plant diversity have changed over the past three decades and whether protected areas have positively affected habitat quality.

Location

Southwestern and central Moravia, Czech Republic.

Methods

In 2018–2019, we resurveyed 94 vegetation plots first sampled in 1986–1991 at 47 acidic dry grassland and heathland sites. We compared the number of all vascular plant species, Red List species and alien species per plot using parametric and non-parametric tests, life-form spectra using the chi-square test, species composition using detrended correspondence analysis, and indicator values using a permutation test. We also compared these changes between sites within and outside protected areas.

Results

Vegetation changes over the past three decades have been relatively small. However, we detected a decrease in total species richness, the number of Red List species and the number of characteristic species of dry grasslands. Neophytes were infrequent, while archaeophytes increased slightly. The competitive tall grass Arrhenatherum elatius, annual species and young woody plants increased in abundance or newly established at many sites. Indicator values did not change except for a slight increase in nutrient values. These negative trends occurred both within and outside protected areas but were more pronounced outside.

Conclusions

Formerly grazed acidic dry grasslands and heathlands in Moravia are slowly losing habitat specialists, including threatened plant species, and are increasingly dominated by Arrhenatherum elatius. Conservation management, especially cutting in protected areas, slows down the negative trends of decline in plant diversity and habitat quality but is insufficient to halt these processes completely.  相似文献   
80.
Overdieck  Dieter 《Plant Ecology》1993,104(1):403-411
The CO2 enrichment effects (300–650 µmol mol-1) on mineral concentration (N, P, K, Ca, Mg, Mn, Fe, Zn), absolute total mineral contents per individual and of whole stands of four herbaceous (Trifolium repens L.,Trifolium pratense L.,Lolium perenne L.,Festuca pratensis HUDS.) and two woody species (Acer pseudo-platanus L.,Fagus sylvatica L.) were investigated.In general, the mineral concentration of the plant tissues decreased (all six species: N>Ca>K>Mg) with the exception of P. Mn and Fe were only determined for the tree species. Both decreased in concentration (Mn>Fe). Zn was only analysed forTrifolium pratense andFestuca pratensis and decreased significantly in the grass.Despite of decreases in concentrations of as much as 20% in some cases there were increases in absolute amounts per individual and, therefore, in the whole vegetation up to 25% because of the enhanced dry matter accumulation at elevated CO2 supply.Dedicated to Prof. Dr. R. Bornkamm, TU-Berlin, on behalf of his 60th birthday  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号